MATH 3060 Tutorial 12

Chan Ki Fung

November 30, 2022

- 1. Let $X = (0, \infty) \subset \mathbb{R}$. Consider the metrics $d(x, y) = |x y|, \ \rho(x, y) = |x y| + |\frac{1}{x} \frac{1}{y}|$.
 - (a) Show that a sequence converges in d if and only if it converges in ρ .
 - (b) Is d complete? Is ρ complete?
- 2. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable with a differentiable inverse G, show that the Jacobian matrix of G must be nonsingular everywhere.
- 3. Show that the system

$$\begin{cases} x - 2y^3 = 0.01\\ y + \sin^2 x = 0 \end{cases}$$

has a solution.

- 4. Let f be a C¹ function in \mathbb{R}^2 satisfying $|f(x,t)| \leq 1+|x|$ for all $(t,x) \in \mathbb{R}^2$. Show that the initial value problem x' = f(t,x), x(0) = 0 has a solution x(t) for all $t \in (-\infty, \infty)$
- 5. Let \mathcal{G} be a precompact subset of C[0,1] and \mathcal{K} be a precompact subset of $C[0,1] \times C[0,1]$. Define, for each $g \in \mathcal{G}$ and $K \in \mathcal{K}$, the map $T_{g,K} : C[0,1] \to C[0,1]$ by

$$(T_{g,K}f)(x) = \int_0^1 K(x,t)f(t)dt + g(x)$$

for any $f \in C[0,1]$. Show that if C is a bounded subset of C[0,1], then the subset

$$\cup_{g\in\mathcal{G},K\in\mathcal{K}}T_{g,K}(\mathcal{C})$$

is precompact in C[0,1].

- 6. (a) State the Baire Category theorem.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For $x \in \mathbb{R}$, we define

$$\operatorname{osc}_{f}(x) = \lim_{r \to 0} \sup\{|f(y) - f(z)| : y, z \in (x - r, x + r)\}.$$

Show that f is continuous at 0 if and only if $\operatorname{osc}_f(x) = 0$.

- (c) Show that the set of continuities of a function $f:\mathbb{R}\to\mathbb{R}$ cannot be $\mathbb{Q}.$
- (d) Give an example of a function $f:\mathbb{R}\to\mathbb{R}$ whose set of discontinuities is $\mathbb{Q}.$